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Consider an elastic body consisting of two materials with different elastic properties. The 
junction is a horizontal line along which the contact conditions do not vary. The following 
are among the many possible contact conditions: 1) Complete adhesion (continuity of nor- 
mal and ahear atreaoes as well as vertical and horizontal displacements); 2) frictionless 
contact (continuity of normal atreases and vertical displacements with vanishing shear 
stresses); 3) nonslip with possible separation (continuity of shear stresses and horizontal 
displacements and the absence of normal stresses). 

It is well known that iu the case of complete adhesion of joined materials it is generally 
possible for Stoneley [I] surface waves to propagate along the junction line. The problem 
concerning the existence of these waves for joined materials with arbitrary properties has 
been investigated in [2 and 31. 

The preoent investigation (Section 1) deals with surface waves which propagate along 
the boundary of joined materials in cases involving contact and nonslip with possible sep- 
aration. 

Just as in the case of Stoneley waves, the surface waves for bodies in contact do not 
exist for arbitrary relations between properties of the elastic materials, whereas for nonslip 
conditions between bodies, surface waves always exist. The velocity of these as well as 
other surface waves ie bounded by the smaller of the Rayleigh velocities and the smaller of 
the velocities of sound in the two joined materials. 

Note that papers [4, 5 and 61 and [6] contain prior studies of reflection and refraction of 
elastic waves along the junction line between two half-spaces for contacts of types (2) and 
(31, respectively. 

The surface wave velocities in cases of contact and nonslip between bodies are the 
characteristic speeds obtained in problems of crack propagation along the junction. It was 
shown in [7] that for steady motion of a normal separation crack along the boundary junc- 
tion, when the continuation of the crack consists of complete adhesion, there are, in addi- 
tion to the apeed of sound, five other charactedatic speeds and that transition through 
these speeds leads to a change in the character of the stress distribution in the neighbor- 
hood of the crack tip. Theoe speeds are the Rayleigh surface wave velocities in each of 
the half-spaces; the Stoneley wave velocities, and finally two velocities which, as will be 
seen, coincide with co and oa, the surfacc wave velocities in cases of contact and nonslip 
reltpectively. 

In this connection, the investigation in Section 2 deals with the steady motion of a 
“semi-infinite” crack with normal separation along a boundary with complete adhesion be- 
tween materiala subjected to concentrated shearing and normal loads, the crack velocity c 
coinciding with surface wave velocities obtained under contact and nonslip conditions. 

It turns out that, under the action of normal loads as well as shear loads only, if c = c, 
or c = ca no free crack segment preceding the load exists. 

An intereating property of the velocities ce and c should be noted. If two free elastic 
half-apace8 are deformed under identical normal sur ace loads moving with velocity c, then P 
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the boundary displacements are such that these half-spaces may be fitted one agefttst the 
other satisfying contact conditions along the boundary. A similar aitaation exists ~ha 

identical shearing loads, moving with a velocity cP, act on the boundary of free hslf-apacsr 
The two half-spaces can be brought together so that the nonslip boundary conditions uo 

satisfied. 

1. l.l”, Consider an elastic body consisting of two half-spaces which are joined along 
the x axis and which possess different elastic properties. All quantities associated with 
the upper (y > 0) and lower (y\< 0) half-spaces will be designated by the subscripts 1 and 
2, respectively. The following conditions are assumed to hold along the line of contact: 

ci,1= Q*, u1= v2, ‘tq,=zr?t2=o (y=O, --<z<OO) (1.1) 
Here u,, end T_, are the normal and shear stresses, while v denotes vertical displacs- 

men& of pomts on the boundary surface. 
Thus, horizontal displacements may be discontinuous along the junction line, i.e. the 

half-spaces may slide against each other without friction. Such a joining may exist, for exam- 
ple, when elastic bodies are placed one on top of the other, and there is no friction along the 
line, of contact. 

The surface waves of au elastic body consistin 
f 

of two half-spaces in contact will be 
sought in the exact same manner as was done in [2 in connection with the condition of 
complete adhesion (a,, t = a,, ,T ,,I = -T 
procedure of V.I. Smirnov an a a So olev 

*I sI = u2, vt = v,) at the boundary, utilizing the 
BL applying complex variable methods to the wave 

equation. 
We introduce the scalar and vector potentials fp1,2 

the wave Eqs. 
and $t, 2, respectively, satisfying 

air&i = (Pitt, bi’a$i = gilt, Ui2 = (hi + 2pi) / pi, b? = fJ,i /pi 
The contact boundary conditions (1.1) may then be written as: 

1 
= 0 

I%[($- 2)&1+2!+2 ~3-pel(~-2)A'pa+2~-2~]=0 

Following [ 2 and 81, we will seek the potentials Qi and z,,$~ in the form 

‘pl = W W + a5 -I- QmJ, $1 = N2f (Pt + ux + i!@bl) 

Q2 = N3f (pt + ali: - iyo,2), $2 = N4f (Pt + ax - iymb2) 

(1.3) 

O,j = (a2 - p2 / CXj2)"', ogi = (a2 - p2 1 bja)“* ii = I, 2) (1.4) 

Here N t,..., N, are constants while f is a function of a complex variable, regular in the 
upper half-space and possessing a derivative which vanishes at infinity. This guarautees 
the attenuation of oscillations as the distance from the boundary y = 0 increases, i.e. tke 
oscillations wiI1 be surface waves. In addition, we will assume that the wave velocity does 
not surpass the smaller of the velocities of sound in the joined materials. 

Substituting (1.4) into (1.3), we obtain a homogeneous system of linear equations in the 
four constants N I,._,, N,. For the existence of a nontrivial solution of this system, and 
consequently for the existence of natural oscillations of the joined bodiea, it is necessary 
and sufficient that the following determinant vanish: 

plBbl - 2p&ob, - bQ,, - 2p&xo,, 

2iao,, 'bl 0 0 

0 0 2iao,, - sz,, 
= 0 (1.5) 

‘%l -U ‘%2 a 

S&i = p2/bi2- 2a2 @==I> 2) 
fn expanded form, (1.5) takes the form 
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112 (P2 / h2) 001 [Qb8’- 4U2%,0,] + PI ($‘” / ba2) %A[~b12 - ~2%l~b11 = 0 (1.6) 
Taking into account the not&on ‘in (ii&) a&&S) for o and fit the above condition reprs 
ssnts au equation for the determination of surface wave velocities in the joined bodies. 
The left-hand side of (1.6) coincides with the common denominator of the coefficients of 
reflection and refraction of elastic waves along the contact line between sliding elastic 
bodies, as determined in [S]. 

1.20. Let (p/qop= c, and rcwrfte (1.6) in the form 

E(c) = p2n,” r’l - ml2 Ra (c) + ptn.22 v’l - m22 Eil (c) = 0 

-- 

mj = c/q, nj = C / bj (i = 1, 2) (1.7) 

Here R,( c ) is the Raylsigh function for the jth half-space. The roots CR’ of Eqs. R, (c ) 
= 0 are the velocities of the Raylaigh surface waves in each of the joined half-spaces. 

We will now ascertain under what conditions (1.7) has roots when c lies in the interval 
0 to 6, (without restricting generality, it may be assumed tbat bt < b, and cut < CR2 ). lt 
may be ahown (as it is done in (21 for the equation defining the velocity of Stoneley waves) 
that (1.7) cannot have more than one root in the interval (0; b,). Furthermore, it is easily 
seen that (1.7) hss no roots for O,< c < cIz 
~,<~~~~sothatE(c~<Owhenc,<c~t~ 3% 

Indeed,Rt~Ofore,<cRt andR2COfor 
us, if the root co exists, it must lie between 

“P’ 
snd bt. A necessary and snfficieut condition for the existence of a root of (1.7) defi- 

n ng the surface wave velocities in the joined bodies is given by 

E (U > 0 (1.8) 
The above condition is satisfied, for example, when the elastic properties of the joined 

materials do not differ very much, and the following relationship exists between the velo- 
cities of surface waves and transverse waves in tbe two half-spaces: cR1< cRP < b, < 6,. 
In that case, E ( bt) > 0, since R, > 0 for c > CR2 and RI > 0 for c > cRt. Moreover, under 
these circnmstutces, 0. lies between the Rayleigh velocities crtl and cR2, since E ( cIzl) 
< 0 while E (cR2) > 0. III particular, if an elastic body consists of two joined half-spaces 
both of which are of the same material, then cRt = cR 
Rayleigh wave velocity c 33 

and ee simply coincides with the 

materials differ sharply, P 
for this material. On the o et hand, if the properties of the two 

or example, one of them, say the second, is absolutely rigid, tken 
E ( bI) < 0, and (1.7) has no roots. This means that, in case of contact between an elastic 
body with a perfectly rigid body, no surface waves can propagate along the boundary. 

1.3”. We will now seek surface waves in joined materials under conditions different 
from those of 1.1’ and 1.2’. Suppose that along the junction line 

Tut/l = zm, u1= ur, $1 = at/t = 0 (Y = 0, --<x<=) (1.9) 
Under these conditions, the materials may separate from each other, but they can not 

slide. 
This may be described in the following manner. Assume that in each of the half-spaces 

there exists a series of emall openings which are open to an perpendicular to the boundary. 
Asstuue further that the materiala are placed against each other so that the openings are 
opposite each other and that in each pair of juxtaposed openings there is a frictionless thin 
peg. In such a junction, the pegs prevent sliding between the two bodies, but aeparation is 
not prevented. 

In terms of tbe potential functions, the contact conditions take the form: 

(1.10) 

(+2)A(p,+23-2$&=0, (+2)n(p,+2$$-2%=0 

If we again seek potential functions in the form (IA), then the necessary and sufficient 
condition for tbe existence of a nontrivial solution takes tbt form 
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Ir&amol PIQUE ILg2icul)da - Wbr 
a iobl --a ‘%a 

0 0 
= 

'bl - 2iao,, 
0 (1.11) 

0 0 'ba 2ia%, 

or, upon expansion of the determinant and taking into account (1.4) and (l.S), followed by 
the snbetitotion ([p/ 1 a I]= c 1, 

G (c) is panI v’l - RI* R, (c) + j.wQ J472 RI (c) = 0 (1.12) 

It is easily seen that (1.12) has a single root c 

G W >t 

in the interval (0, bt) if and only if 

SinceG(bt)=Clt(bt2/b22)~~)~0, th 
(1.131 

e above condition is satisfied evtry- 
where. 

Thus, for arbitrary relations between the elastic properties of two materials which are 
joined so as to provfde a nonslip condition but which are able to separate along the boan- 
dary, surface waves may propagate with a velocity cp as defined by (1.12). 

2. The emrface wave velocities C. and cp in bodies which are in contact or which have 
nonslip joints turn out to be the characteristic velocities in problems of crack propagation 
along the boundarise of various typea of jointa. 

As an example, consider the problem of steady motion of a semi-infinite crack having 
normal separation and propagated along the boundary by either normal or ahearing conccn- 
trated loads, the extension of the crack being a joint with complete adhesion. 

It can be shown that the Fourier trannforms of stresses and displacements for the upper 
and lower half-spaces are interrelated at the boundary by the relations 

au,- = - aUi+ + i&+$,1+ + &Txvl’ fm(i.4&- f BlT,,,3 

c&v,- = - aVl+ + f&Z,+ - iArT,,: + (CtZyl- - i,4rTXVL-) ia>ot 
aU2- = - aUa+ + iAzZyzi - BzT,& + (iA&- - BzT,J 

ulr,- = - aVz+ - CzZ,+ - i&Twa+ -/- (- CzZ5,2d- iAzT,,-) 

au1- E - aU1+ + iA&+ - BIT,~* + (iAl&- - BIT,,~-) (2.1) 

aV1- = - aVI+ - &XVI+ - iAITmI,+ + (-- CIXU1- - iilrT,k,-) 
(a<()) 

all;a- = - aUr+ + iA2X,a+ + B2T,,,+ + (i.h&,;+ BaT,,,2? 

uva- = - aV,+ + &Em+ - iAzT,a’ + (C&,Bw - i.4~Txgz-) 

Aj= 2 fFY$ f‘l-FZj”-(Z-Bnj’), B 

PjjRj 
j 

= t8j2 f1- fZja 

Pjfij ’ 
cj = “j 2JG=zq 

*j&j 
(i = 192) 

Here, c is the crack tip velocity. 
The capital letten II, V, 2 and T denote the Fourier transforms of the corresponding 

quantities and a ir the transform parameter. 
The (+) and (-) denignatfoma denote Fourier transforms of functions which coiucide 

with the desired solutiona when x >/ 0 and x \< 0, respectively, and which vanish for all 
other x. U*. V*, Z* and T’ are the values obtained in the limit, on the real axis, for the 
complex variable function <I a + iy ; they are analytic in the upper and lower halvea of the 
< plane, reepectfvely. 

2.19 Let as first examine the cane of a crack propagated by concentrated forces which 
are normal to the boaadary. The conditions along the line y = 0 are given by 

byt=bya= -QQsf*+fh 7.y;c!,l=7w2=o f=<O) 

u1= %%, 
(2.2) 

a= m1 t;vr= 7X@, Qll1= %a @>O) 

It has beat shown [7] that, in thin case, transition through the velocities c, and cp is 
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associated with a change in the types of singnlarities obtained for the stresses at the 
crack tip. Let us examine what happens when the crack velocity c coincides with the sur- 
face wave velocity c of contacting bodies. 

From (2.1), with de aid of a F ourier transform of the boundary condition s and (2.2). we 
obtain 

a (VI- - VZ-) = (Cl + C,) Ztil+ - i (AI - AZ) T,zl + (GI - Cd 

a(Ul-- Uz-) = i (A - AZ) Xuls + (BI $ Bo) T& + (Fl - Fz) 

,aVs- = - aVl+ - CZZ,,~+ - i.&T& + Gr, aCJ,- = - allI+;+ iAaX111+ - BaTA + Fz 

(a>O) (2.3) 

a (VI- - VZ-) = -(Cl + C,) IZa+ - i (Al - 4) T& - (Cl - G,) 

a (U;- - U,-) = i (A1 - &) Zul+ - (BI -t_ B2) T.& + (FI - Fz) 

aVa- = - aVl+ + C$2,1+ - i&T& - Cr, aUs- = - aUl+ + i&Xyl+ + BaT& + Fz 

(a<O) 
Here 

G1 = - QCle-i”f, -ial 
Gz = Q&e , Fj = - iQAjeeta’ (i = 1, 2). 

If the crack velocity c = c,, then in view of (1.7) and (2.1). 

Cl+C,=~wlL~~1~a= 0 

and the first two relations in (2.3) take the form 

a (VI - V$ = - i (Al - AZ) T& (- cJo<a<ocJ) (2.4) 

The requirement of integrability of the stresses at the crack tip (the absence of concen- 
trated forces at the crack tip) leads to the condition T,, t ‘+ 0 for a + 00 ; hence it follows 

from (2.4) that Tx,,t ‘= 0 and Vt - - - 
shear stresses 7X,, = 

V, = 0. This means that, for c = c~, there are no 
0 (x > 0). and the vertical displacements of the crack edges coincide 

vt = v 
pair o ? 

(z < 0); i.e. the crack edges are in contact with each other. Now, from the second 
relations (2.3) we obtain 

a (Ul- U2)- = i (.-II - -42) Zul+ - iQ (A1 - ‘42) ewia’ (--<a<=) (2.5) 

It is clear from (2.5) that i (A, - A, 1 c,.,+ and a (U, - U, )- are equal to the limit val- 

ues of the Cauchy type integral 
co 

’ iQ (~41 - A&a s -it1 dt 

t-6 
--M 

(2.6) 

when <= a + i y approaches the real axis (path of integration) from above and below, res- 
pectively. It is easily seen that W += 0, and, W-= i (A, - Al) Qmta’. Thus, x,, ‘= 0, 
and, since U1+ - U,+ = 0, cx (VI - U2) = - iQ (A,---A&-fat. Performing the transfor- 
mation and taking into account the condition of adhesion for the crack continuation, we ob- 
tain 

ul- u,= -Q&4,- A,) for 3‘ < - I; u1 - u, = 0 for 5 > - 1 (2.7) 

Furthermore, b,,t = 0 for x > 0, and this in conjunction with (2.2) implies that the nor- 
mal stresses along the junction line differ from zero only at the points where the moving 
concentrated loads are located instantaneously. 

Let us compute the vertical displacements for points along the junction line. Since VI> 

= V,’ and Txylt = c,: = 0, the third pair of relations (2.3) may be written in the form 

cd’, = QC/ (cc > 0), aV, = - QC2eeia’ (a < 0) (2.6) 
Whence inversion yields 

01 (s, (~)=w:s, o)=--- QCz~n~r+~~+const (2.9) 
3% 

Thus, the distribution of the vertical displacements at boundary points is similar to that 
resulting from the action of a concentrated load on a half-space. A similar pattern exists 
for the horizontal displacements. As in the case of a normal load acting on a half-space, 
the horizontal displacements on the junction boundary in the first and second half-spaces 
to the right and left of the point of application of the load (x = - I) take on constant values. 
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Moreover, as (2.7) indicates, for x > - 1.~1 and u2 coincide (as a resnlt of complete adhe- 
sion along the crack continuation), and for x < - I the difference between horizontal dis- 

placements is constant. 
Thus, if the velocity of the normal loads producing the crack coincides with the surface 

wave velocity in the contacting bodies cb, then the conditions for complete adhesion are 

automatically satisfied at all points ahead of the load application point z = - 1. No seg- 
ment of free crack can exict ahead of the load (i.e. I= 0). Indeed, the energy necessary for 
separating the material must he absorbed at the tip of the propagating crack. If the crack 
speed is c = c, no stresses exist at the crack tip f: = 0 (assuming that 1 f 0) and the ener- 
gy flow at the tip equals zero. Thus, for c = c* the crack tip coincides with the point of 
application of the load. 

The crack edges are in contact, and the stress and displacement distributions at the 
junction boundary for each of the two half-spaces is the same as in the case of a corres- 
ponding normal load moving along the free boundary of the corresponding half-space with 
velocity c,,. This means that for c = c* the normal separation crack ceases to exist. Ten- 
sile loads which are normal to the junction and moving with a velocity c = c, can not sep- 
arate the two materials. The deformations of the joined half-spaces are such that they re- 
main in contact. Moreover, as can be seen from (2.9), under a compressive load the first 
half-space will become convex while the second will become concave. The preceding phen- 
omenon arises from the fact that the surface wave velocity in the first of the contacting 
materials is above the Raylei 
< cRZ) . It is known [9 and 

h velocity (ce > cR 

7 { 
) while for the second it is below (cs < 

19 that, in problems o steadily moving loads and punches act- 
ing on the free boundary of a half-space, transition through the Rayleigh velocity produces 
a change in sign for the displacements and stresses. 

Now let us assume that the crack tip velocity c equals the surface wave velocity c1 in 
nonslipping bodies. Thus, as may be seen from (1.12) and (2.1). 

B, + B, = C (4 / PL~P&~ (4% (4 = 0 
Hence, (2.3) yields in particular 

~1 (U1 - V,)- = i (Al - ‘-12) Xc1 - iQ (.A1 - 112) e-is’ 

Whence it follows that 2,,,+ 
(-=<a<=) (2.10) 

= 0, i.e. the normal stresses on the crack continuation van- 
ish, and that 

Cc (u, - u,) = - i (A, -A,) Qe?’ 

i.e. the difference between horizontal displacements is constant 

~1 - u2 = - Q (A, -A,) for z < - I; U1 = U2 for 5 > - 1 

It can be shown that, in this case, the shearing stresses along the crack continuation 
are nonzero and possess no singularities at the crack tip 

z xyl = QG + G) 1 n t-4, - 4) (I + I) for 2 > 0 

by 
Furthermore, the difference between vertical displacements of the crack edges is given 

~1 - ~2 = Q (Cl + C,) / n In 1 x + I 1 + const 

Since the stresses in the neighborhood of the crack tip x = 0 are finite, assuming 1 # 0, 
then the energy flow at the crack tip is equal to z‘ero. This means (just as in the case of 
c = c.,) that steady motion of a normal separation crack moving with velocity c = c 
the boundary can occur only if there is no free crack segment ahead of normal loa d 

along 

the crack (1 = 0). 
s causing 

2.2O. Suppose that a normal separation crack is propagated by concentrated forces of 
magnitude Q and directed along the junction line. Suppose further that complete adhesion 
conditions exist along the crack contin&ion, whereupon, for 7 x 0 

%zyl = rmJ2 = - QS (z + 0, GUI = by- -0 (x<O) 

%a= Q?' zrv1= Txy2 u1= u2, VI = a2 (z>O) 
(2.11) 

ted 

The Fourier transforms for the displacements and stresses on the boundary are interrela- 

by relations similar to (2.3). If c = cg, then, as in Subsection 2.1°, it can be shown that 
the normal and shear stresses along the crack continuation vanish oyl = 0, I-,,,~ p 0 & > 0); 
the horizontal displacements coincide along the entire junction line 

ll1 = u2 5= - (QB, / n) In 1 z + 1 I + const 

The vertical displacements are constant for each of the half-spaces both to the left and to 
the right of the point of application of the load, and their differences are given by 
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Vl - 1’2 = Q (AI - A,) for t < - 1, Cl - v’z F 0 for x > - 1 
If c = Cl), then the shear stresses along the crack continuation vanish ~~,,t = 0(x > 0); 

the normal stresses have no singularities at the crack tip 

(Jy1 = - Q (4 i- &) I’ n (AI - A,) (z -I- t) for z > 0 

The difference between horizontal displacements of the crack edges equals 

Ul - u, = (QB, / n) In Iz + I 1 + const (I < 0) 
and the difference between vertical displacements is constant 

~x-~cz-Q(A,-AA,) for x<-l,u~~--vs-O for z>---1 

Thus, as in the case of cracks propagated by normal toads, steady motion of the crack 
under the action of shearing loads moving with velocities c,, and cp is possible only when 
the load act? at the crack tip. 

The role of the velocity c 
ocity c,, in the case of ttorma loads. If two free elastic half-spaces are subjected to the 4 

in the case of shearing loads is the tzame as that of the vel- 

action of identical surface ahearing loads moving with the velocity cat then the deformation 
of each will be such that they will remain in contact with each other, satisfying nonslip 
conditions along the junction boundary and complete adhesion conditions at all points 
ahead of the load. 
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