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Consider an elastic body consisting of two materials with different elastic properties. The
junction is a horizontal line along which the contact conditions do not vary. The following
are among the many possible contact conditions: 1) Complete adhesion (continuity of nor-
mal and shear stresses as well as vertical and horizontal displacements); 2) frictionless
contact {continuity of normal stresses and vertical displace ments with vanishing shear
stresses); 3) nonslip with possible separation (continuity of shear stresses and horizontal
displacements and the absence of normal stresses).

It is well known that in the case of complete adhesion of joined materials it is generally
possible for Stoneley [1] surface waves to propagate along the junction line. The problem
concerning the existence of these waves for joined materials with arbitrary properties has
been investigated in {2 and 3].

The present investigation (Section 1) deals with surface waves which propagate along
the boundary of joined materials in cases involving contact and nonslip with possible sep-
aration.

Just as in the case of Stoneley waves, the surface waves for bodies in contact do not
exist for arbitrary relations between properties of the elastic materials, whereas for nonslip
conditions between bodies, surface waves always exist. The velocity of these as well as
other surface waves is bounded by the smaller of the Rayleigh velocities and the smaller of
the velocities of sound in the two joined materials.

Note that papers [4, 5 and 6] and [6] contain prior studies of reflection and refraction of
elastic waves along the junction line between two half-spaces for contacts of types (2) and
(3), respectively,

The surface wave velocities in cases of contact and nonslip between bodies are the
characteristic speeds obtained in problems of crack propagation along the junction. It was
shown in [7] that for steady motion of a normal separation crack along the boundary junc-
tion, when the continuation of the crack consists of complete adhesion, there are, in addi-
tion to the speed of sound, five other characteristic speeds and that transition through
these speeds leads to a change in the character of the streas distribution in the neighbor-
hood of the crack tip. These speeds are the Rayleigh surface wave velocities in each of
the half-spaces; the Stoneley wave velocities, and finally two velocities which, as will be
seen, coincide with ¢, and ¢, the surfacc wave velocities in cases of contact and nonslip
respectively.

In this connection, the investigation in Section 2 deals with the steady motion of a
“‘semi~-infinite’” crack with normal separation along a boundary with complete adhesion be-
tween materials subjected to concentrated shearing and normal loads, the crack velocity ¢
coinciding with surface wave velocities obtained under contact and nonslip conditions.

It tuns out that, under the action of normal loads as well as shear loads only, if c = ¢,
or ¢ = ¢, no free crack segment preceding the load exists.

An interesting property of the velocities ¢, and ¢  should be noted. If two free elastic
half-spaces are deformed under identical normal surface loads moving with velocity ¢, then
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the boundary displacements are such that these half-spaces may be fitted one against the
other satisfying contact conditions along the boundary. A similar situation exists when
identical shearing loads, moving with a velocity ¢,, act on the boundary of free half-spaces
The two half-spaces can be brought together so that the nonslip boundary conditions are
satisfied.

1. 1.1% Consider an elastic body consisting of two halfapaces which are joined along
the % axis and which possess different elastic properties. All quantities associated with
the upper {y 3 0) and lower {y £ 0) half-spaces will be designated by the subscripts 1 and
2, respectively. The following conditions are assumed to hold along the line of contact:

Gp=0 UV1=Us Tog1=Ty=0 (E=0, —oolzw) (1.1

Here o, and 7,, are the normal and shear stresses, while v denotes vertical displace-
ments of points on the boundary surface.

Thus, horizontal displacements may be discontinuous along the junction line, i.e. the
hali-spaces may slide against each other without friction. Such a joining may exist, for exam-
ple, when elastic bodies are placed one on top of the other, and there is no friction along the
line of contact.

The surface waves of an elastic body consisting of two half-spaces in contact will be
sought in the exact same manner as was done in [2] in connection with the condition of
complete adhesion (0y =0y g Txys = Tux2s Uy = Uy, vy = ¥,) at the boundary, utilizing the
procedure of V.I. Smirnov an Soi)olev , applying complex variable methods to the wave
equation.

We introduce the scalar and vector potentials @, , and tf, ,, respectively, satisfying
the wave Egs. - (1.2)

alDg; = @iy, bPAY; =Yy, al= N+ 2W)/p;, bE=mp/p;, (=12)

The contact boundary conditions (1.1) may then be written as:
i A L [3‘?2 _ 3‘4’2] =0

dy dx oy ox
9—1_2_ . 2, o, [ [ ag? 0%z s
b [(G—2)Am+ 2 TR =2 2 | — w| (57 —2) A+ 2 G —2 8 |0
T N S

dxdy ' AP a2 gz oy | oy dxE (1.3)
Following [2 and 8], we will seek the potentials @; and i/, in the form

@1 = Nyf (pt + ax -+ iywey), Py = Nof (pt + oz + iyoy)

@2 = Nsf (pt + o — iywgs), P2 = Nuf (pt + azx — iywpg)

1 .
Ogj = (2 —p2/a®) ", @y = (@2— p2/bH" (=12 (1.4

Here N,,..., N4 are constants while f is a function of a complex variable, regular in the
upper half-space and possessing a derivative which vanishes at infinity. This guarantees
the attenuation of oscillations as the distance from the boundary y = 0 increases, i.e. the
oscillations will be surface waves. In addition, we will assume that the wave velocity does
not surpass the smaller of the velocities of sound in the joined materials.

Substitating (1.4) into (1.3), we obtain a homogeneous system of linear equations in the
four constants N,,..., N4. For the existence of a nontrivial solution of this system, and
consequently for the existence of natural oscillations of the joined bodies, it is necessary
and sufficient that the following determinant vanish:

My —2mieey, — PeQy, - 2peitte,,

2100, Oy 0 0 -0
0 0 2aw,  —Qy | 1.5
10,4 —a i@y, @

Qpi = p*/b}? — 20 (i=12)
In expanded form, {1.5) takes the form
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B2 (P? [ 51%) 001 [Qpe® — 40t%00a03] + P (PP ] b3?) 0as] R01® — 4o 00300 ] = 0 (1.6)
Taking into account the notation in (1.4) and (1.5} for » and {}, the above condition repre~
sents an equation for the determination of surface wave velocities in the joined bodies.
The left-hand side of (1.6) coincides with the common denominator of the coefficients of
reflection and refraction of elastic waves along the contact line between sliding elastic
bodies, as determined in [5}.

1.2 Let (p/ | a}) = ¢, and rewrite (1.6) in the form

E@ =pn2 VI—mP Ro(6) + pna? Y1 — ma? Ry (¢) = 0
Ri©)=@—n)—4YT—mpyT—n?

mi=cla;, nj=clb (j=1,2) 0.7

Here R,(c) is the Rayleigh function for the jth half-space. The roots er’ of Egs. R, (c)
= () are the velocities of the Rayleigh surface waves in each of the joined half-spaces.

We will now ascertain under what conditions (1.7) has roots when ¢ lies in the interval
0 to b, (without restricting generality, it may be assumed that by < by and cpy <cpj). It
may be shown (as it is done in [2] for the equation defining the velocity of Stoneley waves)
that {1.7) cannot have more than one root in the interval (0, 5,). Furthermore, it is easily
seen that (1.7) has no roots for 0 ¢ L ¢p,y. Indeed, Ry £ 0 for c S cgy and R, £ O for
¢ £ ¢Ry, 80 that E (¢) <0 when ¢ L cgy. Thus, if the root ¢, exists, it must lie between
€y and by. A necessary and sufficient condition for the existence of a root of (1.7) defi-
ning the surface wave velocities in the joined bodies is given by

E@®y) >0 (1.8)

The above condition is satisfied, for example, when the elastic properties of the joined
materials do not differ very much, and the following relationship exists between the velo-
cities of surface waves and transverse waves in the two half-spaces: ¢z 1< cp, < by <b,.
In that case, E(b,)> 0, since Ry > 0 for ¢ > cgy and Ry > 0 for ¢ > cgy. Moreover, under
these circumstances, ¢, lies between the Rayleigh velocities ¢g; and cp,, since E (cpy)
< 0 while E (¢g5,)> 0. In particular, if an elastic body consists of two joined half-spaces
both of which are of the same material, then ¢5; = ¢, and ¢, simply coincides with the
Rayleigh wave velocity ¢y for this material. On the o&er hand, if the properties of the two
materials differ sharply, for example, one of them, say the second, is absolutely rigid, then
E(b,)<0, and {1.7) has no roots. This means that, in case of contact between an elastic
body with a perfectly rigid body, no surface waves can propagate along the boundary.

1.3°. We will now seek surface waves in joined materials under conditions different
from those of 1.1° and 1,2° Suppose that along the junction line

Tl = Taye, U1 = Uz, OCyu=0y=20 (y=0, — oo <Lz <o0) (1.9)

Under these conditions, the materials may separate from each other, but they can not
slide.

This mey be described in the following manner. Assume that in each of the half-spaces
there exists a series of small openings which are open to an perpendicular to the boundary.
Assume further that the materials are placed against each other so that the openings are
opposite each other and that in each pair of juxtaposed openings there is a frictionless thin
peg. In such a junction, the pegs prevent sliding between the two bodies, but separation is
not prevented.

In terms of the potential functions, the contact conditions take the form:

pl[2 o’ +?f_\lzx_,__6’¢:]_w[2 3y %_%}20

dx oy | oyt 0x® dx oy | Oy Ox?
oy A 21 9P, s ] .
”é’;+‘ay"‘[ 5% T3y | =0 (1.10)
2o o 0 _ g

at 9%, o a2 .

(Fr—2)Am+250 —255,=0 (sr—2)on+25:—25%,

If we again seek potential functions in the form (1.4), then the necessary and sufficient
condition for the existence of a nontrivial sclution takes the form
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J2iom,, 1Sy peliceg,  — Raldy,
o z‘mu — O i0yy _
0, —2isw, O o |=0 (L.11)
0 0 Q9 2iamy,

or, upon expansion of the determinant and taking into account (1.4) and (1.5), followed by
the substitation ([p/|a|]l=¢),

Gl)=pan® VI—B2 R () + mn Vi—na? Ry () =0 (1.12)
It is easily seen that (1.12) has a single root ¢ in the interval (0, ) if and only if
G () > (1.13)
Since G (b,) =p, (b ¥b,2)y/ 1 - (b12/bgz) >, 0, the above condition is satisfied every-

where.

Thus, for arbitrary relations between the elastic properties of two materials which are
joined so as to provide a nonslip condition but which are able to separate along the boun-
dary, surface waves may propagate with a velocity ¢, as defined by (1.12).

2. The surface wave velocities ¢, and ¢, in bodiea which are in contact or which have
nonslip joints tarn out to be the characteristic velocities in problems of crack propagation
along the boundaries of various types of joints.

As an example, consider the problem of steady motion of a semi-infinite crack having
normal separation and propagated along the boundary by either normal or shearing concen-
trated loads, the extension of the crack being a joint with complete adhesion.

It can be shown that the Fourier transforms of stresses and displacements for the upper
and lower half-spaces are interrelated at the boundary by the relations

aly” = —alr* +ihZ % 4+ BT, " + (A2, + BiTy,)
aVy” = —aVit 4 CiBt — idi T, +(Ci3, " —idiT,,7) (@>0)
aUy = —alUs¥ 4 ideZ ot — BeT g - (i4aZ)," — BeT, 5)
G.Vs"' R —— G,Vz"' _ 022W+ — iAszyz+ + (-"-"- szm—-— iAszU?—)
QUL == — Uy + idB — ByT, 4 (S, — ByT, ) (2.1)
aVy™ = — Vit — O * —iT ¥+ (— OiF " — T, ) 7) (2 < 0)
aly” = —als* 4 ideZ ot + BeT, " + (1422 7+ B:T, ;")
aVy = —alV,* + ngm'*' —_— iAszy2+ - (szyﬁ—. — iAsTqu_)
Aj=2V1——m,'2 Vi—njz——(.?—nf)’ Bj:nf Vi——nf. Cj____nfm
il _ BiR; wifts
(i=12)

Here, ¢ is the crack tip velocity,

The capital letters U, ¥, X and T denote the Fourier transforms of the corresponding
quantities and a is the transform parameter.

The (+) and (~) designations denote Fourier transforms of functions which coincide
with the desired solutions when x > 0 and x £ 0, respectively, and which vanish for all
other x. U, ¥+, 5% and TT are the values obtained in the limit, on the real axis, for the

complex variable function {=a + iy; they are analytic in the upper and lower halves of the
plane, respectively.

2.1° Let us first examine the case of a crack propagated by concentrated forces which
are normal to the bomdary. The conditions along the line y = 0 are given by

S =0y =—Q8(F+1), Ty =T.=0 (2<0) (2.2)
ui=us,  BI=vs T =T, S, =0, (@>>0) )
It has been shown [7] that, in this case, transition through the velocities ¢, and e, is
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associated with a change in the types of singularities obtained for the stresses at the
crack tip. Let us examine what happens when the crack velocity ¢ coincides with the sur-

face wave velocity ¢ of contacting bodies.
From (2.1), with the aid of a Fourier transform of the boundary conditions and (2.2), we

obtain
a (V" — Vo) =(C1+Co) 2, — i (A1 — A2) T, + (G1— Ga)

(U —Uy") = i (A1 — A2) 2% + (B1 > Bs) Ty + (F1— Fo)

aVy” = —aVy* —CoZ;t — i-h T, + Go, aUy” = —alUr*}+ ide2 )t — BiT, 4 Fe
(@>0) (2.3)
a(Vim—Ve)=—(C1+Ca) Bt — i (e — Ag) Ty — (G — Ga)
@ (Ur"—Up) =i (Ay— ) E 3t — (B1+ Ba) Topy + (F1— Fa)
aVy™ =—aVy* + CaZ " —ids T} — Gy, alUs™ = —aUr* + ids2,* + BaT ) + Fe
(¢ <0)
Here

Gl —_ che—ial, Gz —_ che—ial' Fj _ — iin,‘ﬂ-{al (,' — 1’ 2)_
If the crack velocity ¢ = ¢,, then in view of (1.7) and (2.1),
C1+Co=E(c)/papg R1Ry= 0

and the first two relations in (2.3) take the form

a(Vi—Va)" = —i (A1 — A2) Ty (— 00 < &t < 00) (2.4)

The requirement of integrability of the stresses at the crack tip (the absence of concen-
trated forces at the crack tip) lea:d_s to the condition Tx’,l"-» 0 for a » o ; hence it follows
from (2.4) that Txy1+= Oand ¥, — ¥, = 0. This means that, for ¢ = c,, there are no
shear stresses 7,, = 0 (x> 0), and the vertical displacements of the crack edges coincide
v, = v, (x <0); i.e. the crack edges are in contact with each other. Now, from the second
pair of relations (2.3) we obtain .

A (Ur— Up)" = i (1 — A2) By — iQ (o — Ag) ¢! (—oo LA o0)  (2.5)

It is clear from (2.5) thati (4, — A4,) X ;*anda (U, — U,) ™ are equal to the limit val-
ues of the Cauchy type integral

i e — —itl
W= o 5 QL = f,éez dt o

when { = a + iy approaches the real axis (path of integration) from above and below, res-
pectively. It is easily seen that W *=0, and, W =i (4, - 4,) Q"' Thus, 2y1+= 0,
and, since Ut — Uyt =0, a (Uy — U,) = — iQ (4;—~As)e-tal, Performing the transfor-
mation and taking into account the condition of adhesion for the crack continuation, we ob-
tain
U, — Uy = —Q (A — 4y} for <l — L uyy —uy =0 for 2> — 1 (2.7)

Furthermore, 0., = 0 for x > 0, and this in conjunction with (2.2) implies that the nor-
mal stresses along the junction line differ from zero only at the points where the moving
concentrated loads are located instantaneously.

Let us compute the vertical displacements for points along the junction line. Since V™=

=V," and Tx“"' =3 y'{ = 0, the third pair of relations (2.3) may be written in the form
aV; = QCpe ™ (@ > 0), aVy = — QCe ! (a < 0) (2.8)
Whence inversion yields

o1 (z, 0) =v: 0z, 0) = — Q%ln |2 4 1| + const (2.9)

Thus, the distribution of the vertical displacements at boundary points is similar to that
resulting from the action of a concentrated load on a half-space. A similar pattern exists
for the horizontal displacements. As in the case of a normal load acting on a half-space,
the horizontal displacements on the junction boundary in the first and second half-spaces
to the right and left of the point of application of the load (x = — ) take on constant values.
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Moreover, as (2.7) indicates, for x > — [, u; and u, coincide (as a result of complete adhe-
sion along the crack continuation), and for x < —~ [ the difference between horizontal dis~
placements is constant.

Thus, if the velocity of the normal loads producing the crack coincides with the surface
wave velocity in the contacting bodies ¢, then the conditions for complete adhesion are
automatically satisfied at all points ahead of the load application point x = — . No seg-
ment of free crack can exict ahead of the load (i.e. ! = 0). Indeed, the energy necessary for
separating the material must be absorbed at the tip of the propagating crack. If the crack
speed is ¢ = ¢, no stresses exist at the crack tip x = 0 (assuming that I # 0) and the ener-
gy flow at the tip equals zero. Thus, for ¢ = ¢, the crack tip coincides with the point of
application of the load.

The crack edges are in contact, and the stress and displacement distributions at the
junction boundary for each of the two half-spaces is the same as in the case of a corres-
ponding normal load moving along the free boundary of the corresponding half-space with
velocity ¢,. This means that for ¢ = ¢, the normal separation crack ceases to exist. Ten-
sile loads which are normal to the junction and moving with a velocity ¢ = ¢, can not sep-
arate the two materials. The deformations of the joined half-spaces are such that they re-
main in contact. Moreover, as can be seen from (2.9), under a compressive load the first
half-space will become convex while the second will become concave. The preceding phen-
omenon ariszs from the fact that the surface wave velocity in the first of the contacting
materials is above the Rayleigh velocity (¢, > ¢g, ) while for the second it is below (¢, <
<¢ggq). It is known [9 and 19] that, in problems oflsteadily moving loads and punches act-
ing on the free boundary of a half-space, transition through the Rayleigh velocity produces
a change in sign for the displacements and stresses.

Now let us assume that the crack tip velocity ¢ equals the surface wave velocity cg in
nonslipping bodies. Thus, as may be seen from (1.12) and (2.1),

By + By = G (c) / papoRy ()R, () = 0
Hence, (2.3) yields in particular
@ (Ur—Us)™ =i(A1— A2} B}, —iQ (:Ay — .15) e~ (—oolaloc)  (2.10)

Whence it follows thatzyl" = 0, i.e. the normal stresses on the crack continuation van-

ish, and that

o (Uy — Uy) = — i (4 — 4) Q™
i.e. the difference between horizontal displacements is constant
U — Uy = — Q (A — 4,) for z L — uy =u, for > — 1

It can be shown that, in this case, the shearing stresses along the crack continuation
are nonzero and possess no singularities at the crack tip
T = Q (C1+ Cy) /(4 — A4y) (= + ) for z>0

Furthermore, the difference between vertical displacements of the crack edges is given

b
v v —v=Q(C,+ Cy)/nln| z+ 1|+ const

Since the stresses in the neighborhood of the crack tip x = 0 are finite, assuming ! # 0,
then the energy flow at the crack tip is equal to zero. This means (just as in the case of
¢ =c,) that steady motion of a normal separation crack moving with velocity ¢ = ¢, along
the boundary can occur only if there is no free crack segment ahead of normal load‘s causing
the crack (I = 0).

2.2° Suppose that a normal separation crack is propagated by concentrated forces of
magnitude Q and directed along the junction line. Suppose further that complete adhesion
conditions exist along the crack continuftion, whereupon, fory = 0

T T e = T Q@D oy =0,=0 (2<L0)

Sy1 =Sy Ty = Ty W=u;, v1=93 (x>>0)

The Fourier transforms for the displacements and stresses on the boundary are interrela-
ted by relations similar to (2.3). If ¢ = €4y then, as in Subsection 2.1°, it can be shown that
the normal and shear stresses along the crack continuation vanish Op1 =0, Tyy; =0 (x> 0);
the horizontal displacements coincide along the entire junction line

Uy = uy = — (QB,/n)In |z + 1]+ const
The vertical displacements are constant for each of the half-spaces both to the left and to
the right of the point of application of the load, and their differences are given by

(2.11)
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vy — vy = Q (A3 — 4y) for z <l — 1, vy — vy =0 for 2> —
If ¢ = ¢, then the shear stresses along the crack continuation vanish 7,y = 0(x > 0}
the normal stresses have no singularities at the crack tip
Gp=— QB+ B)/n(dy—A)(z+ 1) for 2z>0
The difference between horizontal displacements of the crack edges equals
Uy — Uy = (QBy/ n) In|z + 1| 4 const (z < 0)
and the difference between vertical displacements is constant
Uy Vg = Q(AI—AS) for .'C<-—‘ i, )4 vl-—-vzr.—.:() for £>"”l

Thus, as in the case of cracks propagated by normal loads, steady motion of the crack
under the action of shearing loads moving with velocities ¢, and ¢4 is possible only when
the load acts at the crack tip.

The role of the velocity ¢, in the case of shearing loads is the same as that of the vel-
ocity ¢, in the case of normal loads. If two free elastic half-spaces are subjected to the
action of identical surface shearing loads moving with the velocity ¢, then the deformation
of each will be such that they will remain in contact with each other, satisfying nonslip
conditions along the junction boundary and complete adhesion conditions at all points
ahead of the load.
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